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CHAPTER 1

INTRODUCT ION

Circuit simulation has become an indispensable tool in the
design of integrated circuits. Standard circuit simulators, such as
SPICE [1], can predict accurately the circuit performance. However,
the use of these simulators is limited to circuits of several hundred
transistors. As the size and complexity of the integrated circuit
increase, the memory and cpu time requirements for such an analysis

become prohibitive,

An effective way to improve the speed and reduce the memory
requirement of the c¢ircuit simulator is to exploit the modular and
repetitive nature of the digital circuits. Digital c¢ircuits are
mostly designed in a hierarchical fashion with the same basic cells
(e.g. logic gates) repeated many times to form the entire circuit.
In a large circuit often only a small percentage of the cells will be
actively changing states at the same time, while the other cells will

remain inactive or 'latent’’,

The circuit simulation program SLATE (3] (a Simulator with
Latency and Tearing) developed by Ping Yang at the University of
Illinois takes advantage of the properties of the circuits mentioned
above to enhance its performance. SLATE utilizes node tearing [5],

{6], to partition the circuit into blocks of subcircuits that can be

analyzed independently. In the analysis, latent subcircuits are by-
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passed, which results in a significant savings of the analysis time.

Despite the hierarchical nature of the VLSI circumits, the origi-~
nal version of SLATE allowed only ome level of subcircuits, and the

nesting of subcircuits to form a larger subcircuit is not allowed.

In this research, three schemes have been proposed to modify
SLATE so that it can analyze circuits with subcircuit nesting., The

effects of the schemes on the performance of SLATE will be evaluated,

Chapter 2 reviews the problems of circuit simulation and gives a
comparison between the ‘'standard’ simulators and SLATE. Chapter 3
discusses the node tearing method and the 1latency scheme used in
SLATE. Chapter 4 discusses the three schemes to process nested sub-
circuits and presents some experimental results on how the perfor~
mance of SLATE is affected at different degrees of network tearing
and latency exploitation., Chapter 5 presents the conclusions,

Finally, the Appendix contains the program reference guide for SLATE.
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| CHAPTER 2
- REVIEW OF CIRCUIT SIMULATION

With the exception of highly constrained design methodology, it

. is usually impossible for a circuit designer to produce a guaranteed
error~free design with known performance under a wide range of

operating conditions, | However, with the aid of the ’'’standard’ cir-

é; cuit simulators such as SPICE [1], designers can predict the voltage
and current waveforms of a large variety of circuits accurately and

optimize their designs.

‘l However, the speed of the simulator is traded—off with its ver-
satility and accuracy. In order to simulate a wide range of circuits
accurately and be adaptable to new technologies that will arise in

l. the future, the program has to use a general algorithm of solving a
system of coupled, nonlinear, ordinary differential equations to
derive the solution of the <circuit equations., Hence, it cannot

- exploit the special characteristics of a technology to enhance its

performance.

In this chapter we shall review some basic techniques that are
used in ''standard’ circuit simulation and compare them to the algo-

rithms used in SLATE.
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4
2.1. Technigues of Standard Circuit Simulation
The behavior of the circuit being analyzed is described by a set .
of differential equations: =
f(x(t),z(t),n) =0 (2.1)
x(0)=x0
where x is the unknown variable vector at time t with the initial -
condition x, at t=0, while u is the input vector and f is a continu- <.
ous function.

The ''standard’ circuit simulators are characterized by their use
of the following algorithms in the process of solving equation (2.1): -
(1) The derivative x(t) is replaced by a stiffly stable implicit

integration formula, which is a function of x(t).

(2) The time step h and integration order K are controlled automati- -
cally to insure the accuracy of the solution.
(3) A quadratically convergent Newton’'s method is used to solve the

resulting system of nonlinear equations. =
(4) The system of linear equations involved in each Newton step is

solved by sparse Gaussian elimination.

After applying the implicit integration formula, equation (2.1) %E
is transformed into a sequence of nomnlinear algebraic equations at ..
various time points in the form of -

g( x,) =0 (2.2)
L} IR “..>‘_b.'.-“‘.7'~4 Sl N NN e e - IRASEY
BT IO S A S o S Ry R T R T S L ST
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. where the x,‘'s are the unknown voltage and current values at the time

point ti in the time interval we want to analyze.

Starting at t=0, the nonlinear algebraic equations of (2.2) are

- linearized by applying the Newton-Raphson method to a set of matrix
equations:

-]
- Ax = b (2.3) -3
Equation (2.3) is solved by Gaussian elimination. Iteratiom is E
. carried out until the solution has converged or the iteratiom count ..4
limit is exceeded. The program then uses the solution at the present .‘i
- time to predict the solution at the next time point in order to ini- J
i- tialize the iteration process at that time point. The process repeats ¥

itself until the solution at the last time point is found.

N The matrizx A is set up using the Modified Nodal Approach (MNA)

) (8]. Sparse Tableau techmiques are applied to reduce the number of
operations needed by the Gaussian elimination to sclve for x in '_;;
(2.3).
4
‘ ?

———— — —————————— e —————————

Te e Ta Te o Te 0

- Although the ’''standard’ circuit simulator has been successful in

the past, it still faces many problems, such as:

(1) As the size of the circuit increases, the cpu time and memory

3 1

requirements become prohibitive,
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(2) The solution of the circuit equations will fail if a zero pivot

is chosen in the LU factorization process.

(3) Analysis time is wasted on computing the solutions of parts of

the circuit that are not actively changing states.

(4) The form of solution procedure used is not suitable for imple-

mentation in machines with parallel processing capabilities.

In the following section we shall discuss the approaches used in

the program SLATE as an effort to alleviate the above problems.

2.4. Algorithms used in SLATE

The circuit simulation program SLATE was originally developed by
Ping Yang at the University of Illinois and then modified later by
the same author at the Central Research Laboratory of Texas Instru-
ments. The program contains various features that alleviate the

problems of the ''standard’ circuit simulator.

Firstly, the program uses a reordering scheme [3] that avoids
the possibilities of creating zero pivots in the LU factorization
process, With a little extra time spent on the preprocessing phase,
the «reliability and accuracy of the equation solution are substan—

tially improved,

Secondly, the latency of the circuit is exploited. Using node
tearing [5], the circuit to be analyzed is partitioned into indi-
vidoal subcircuits and the 'rest of the circuit’’. Each subcircuit can

be analyzed independently and the analysis of the latent subcircuits
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(including the interconnections between the subcircuit and the rest
of the circuit) can be by—-passed. It was shown that latency exploita-

" tion can result in savings of up to 50% of the analysis time [3],[4].

Thirdly, the repetitive nature of the subcircuit definitions is
exploited. Each of the subcircuit definitions, which may appear many
times, is reordered once and their matrix pointers are only gemerated

once,
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CHAPTER 3

TEARING DECOMPOSITION

The idea of tearing decomposition is to ’'‘tear’’ the circuit to be
analyzed into smaller subcircuits that can be analyzed independently
H and combine the solutions of those subcircuits together to form the
solution of the entire circuit., There are two types of tearing tech—

niques: (1) branch tearing that selects a set of tearing branches and

uses their currents as the tearing variables (Fig. 3.1) and (2) node
tearing that selects a set of tearing nodes and uses their voltages

as the tearing variables (Fig 3.2).

In SLATE, the node tearing method is chosen in favor of branch
tearing [3]. It is assumed that the subcircuits will be defined by
the user and the parts of the circuit that are not included in a sub-
circuit definition are automatically assumed to be in the 'rest of

the circuit’’ block shown in Fig. 3.1 and Fig. 3.2.

Algebraically, node tearing is equivalent to a special reorder—
ing of the circuit equations into a Bordered Block Diagonal Form
(BBDF). Each block corresponds to a smbcircuit and the border

corresponds to the interconmections of the subcircuits.
The BBDF form of matrix reordering has several advantages:

(1) This approach is suitable for the exploitation of latency and

parallel processing.
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Fig. 3.2 Example of a Network Partitioned into Three
Subne tworks by the Node Tearing Method.
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(2) The memory requirement is reduced. If storage is limited, indi-
vidual subcircuits can be loaded into memory and analyzed one by

one. This permits a much larger system to be simulated.

In the following sections, we shall discuss the solution pro-
cedures of the matrix equations and the latency schemes used in

SLATE.

3.1. Constructing the Node Tearing Matrix

Consider the network N shown in Fig. 3.2. It consists of k¥ sub-

networks { N, N, ..., Ny}, with subcircuit node sets {ay, @5,...,
@y} and sets of tearing modes {a,4, a,5, ..., a,;)}. These subnet-
works are connected together witi $h< rest of the circuit which have
node set a.. Assuming there is no coupling between the subnetworks,

the nodal equations of N can be expressed as:

Y 'y 1 [+ 7 T ]
~s1 | ~st1] ~51 ~ssl1
0 | | o
Y ~ l v | ~ v h g
~32 | ~st2] ~s2 ~352
0 . | | . . (3.1)
~ . | | . .
Y l v | v h
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The matrix eqnation$ of (3.1) are solved by LU factorization and e
forward backward substitutions. There are several possible factori-
zation and substitution schemes [6]. The LU factorization scheme 81 B
and substitution scheme F1 are used (Tables 3.1, 3.2).

Y

.

Bquation (3.1) is solved first by eliminating all the Yts'

i (step

1 of S;) to get the interconnection matrix equations:

P — gy - “
] [
{ Y Y v J :
& ~tt ~tsipr ~ts _
} = (3.2)
3 Y Y \4 J
~rt ~ lower -~
L. T rx:d _.rJ 5 rsj

where Y‘

]
)
M
q
[ag
[}
[
o)
(2]
[y
Pt
a
[

tt tt

TN

! . k -1 .
‘ and J =7, - 3Y (Y ..) T . -

Equation (3.2) can be solved to obtain V. and v (step 3 of 84)

- "' vy e

and the solution of the v . can be obtained by backward substitution

(steps 4, 5 and 6 of Sl).

ey v o USRS sRda
‘f LA

3.2. Latency Scheme of SLATE

There are two types of latency, namely, latency in the Newton

Raphson iteration and latency in time, their nature and origins are -
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Table 3.2 Substitution Scheme 81 used in SLATE
Step §1
1 L a =7
~3k ~ ~ssk
T
2 y =VWa
F 3 L U v =J -y =
H ~tk~tk~tk ~tsk ~
: 4 z =Vvw '
_ -~ ~ ~tk
i '
.. 5 y =3-12 .
: ~ ~1 ~1 “-
i 6 U v =7 -
*.‘_ ~sk~sk ~
& »
b
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I' explained in detail in pp. 138-141 of [3]. For latency in the Newton
Raphson iteration, subcircuit Nk is latent at the i’th iteration

point if:

(1) IVNkm(i—l)-VNkm(i-2)|$pa+ermax(|VNkm(i-1)|, ;

Ivm(i_z)l) for m=1'2,o'o (3-3)

YT AL

and

-
RO T, SRR IRISI

(2) |Vth( 1) -Vepn(i-1) [ Lo ve max(lV (D],
'Vnm‘ -0 D for »=1,2,... (3.4)

where ¢, 2and e, are the absolute and relative tolerance, respectively,
and V,. (i) are the subcircuit and tearing node voltages at the i'th
8 iteration. The subcircuit N_ will remains latent as lonmg as all its 1

external nodes remain latent:

(3) |Vtkm(i+j)—vtkm(i-1)|$§a+ermax(|vtkm(i+j)|. 1
) 'vtkm( i—l) I) fOt H.FI'Z:Q “e (3 -5) .:
j=1,2,... N

The scheme 2 proposed in [3] is used to check for 1latemey in
time. A subcircumit Nk is declared to be latent in time if its tearing

> node voltages at times t i .
ltag p and t . satisfy:

—
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(1) 1V, (e ) Vegm(t o) He e max(1V, (e,
WV em(te ) D for m=1,2,... (3.6)

and the currents of the emergy storage elements:
(2) 1T (e ) -T(tp q) e re max (1T (e )],
1T e D =1,2...b (3.7)

where Bc is the absolute error tolerance of the current. This condi-

tion is wused to check if the changes of the energy storage elements

are small. Furthermore,

ﬂFl.z e (308)

where Ikm(tn) is the current (or voltage) and Q. (t ) is the charge
(or flux) of the capacitor or inductor checked at time t o and b4 is
the time step used. This condition is used to check if there are

slowly varying nodes within Nk‘

The subcircuit Nk will remain latent as long as:

(4) lvtkm(tn+j)_vtkm(tn-1)'isa+erm31(|vtkm(tn+j)"

v (t h =1,2,..
tha' a1 j=1.2....(3.9)

v—rw

A

o

T2
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.i CHAPTER 4

R PROCESSING NESTED SUBCIRCUITS AND TEARING CONSIDERATIONS

=
When there is more than one level of subcircuit (Fig. 4.1) nest-
ing in the circuit description, the problems of setting up the matrix
structure and solving the matrix equations become more complicated.
In our research three schemes of processing the nested subcircuit
r structures have been considered:

(1) Implement a nested BBDF matrix that can exploit latency in a

hierarchical manner.

(2) Tear the nested subcircuits away from their parents to form a

- circuit structure with only one level of subcircuit.

(3) Expand the nested subcircuits inside the first level subcircuit

definition to form a circuit structure with only one level of

subcircuits,

4.1, Scheme 1: The Nested BBDF Matrix

9

- 4
, The nodal equations of the circuit to be analyzed can be reor— !
dered into nested BBDF form. The interconnections of the first level K

of subcircuit are placed on the outermost border of the matrix and

the interconnections of the second level of nested subcircuits are

placed on the next level of border and so forth. The reordering

........................
--------------

............

......
...............
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repeats up to the last level of nesting.

For example, the circuit in Fig 4.1 has a maximum of three lev- -

els of nesting., Its BBDF equation matrix is shown in Fig 4.2,

If this form of matrix equation is adopted, latency of the sub-
circuits can be exploited in a hierarchical manner during the
analysis of the circuit, The program checks the latency of the sub-
circuits at different levels of the circuit hierarchy and by-passes
the analysis of the subcircuits starting at the level that they were

found to be latent.

However, this scheme for processing the nested subcircuits has
several disadvantages. Firstly, it is difficult to implement. The .
equation matrix and solution procedure become complex'with arbitrary
levels of nesting. Secondly, the «cpu time saved in hierarchical
latency exploitation may not compensate for the overhead introduced

-

by the extra latency checking required,

4.2, Scheme 2: Tearing the Nested Subcircuits

In the second scheme, the subcircuits nested inside other sub-

circuits are torn away from their parents to form modified subcir

P

cuits with their tearing nodes placed on the border of the equation ‘;

matrix, The tearing procedure continues until all nested subcircuits

- are levelized,
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Fig. 4,2 The Nested BBDF Matrix of the Network shown
in Fig. 4.1.
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For example, the subcircuit N, in Fig. 4.1 contains the second

level nested subcircuits Nll' N12. le contains the third level sub-

Pk o 2 20 LRI A I
ASEMMER -2 AR

L, o circuits N121. These subcircuits are tora apart to form modified
F! ' subcircuits without any nesting. Algebraically, this is equivalent
?% to reordering the tearing nodes of the nested subcircuits on the
S
S border of the nodal equation matrix:
pr— — o Sy el ey
Y’ ly | v’ I
~s1 | ~st1 | ~s1 ~s581
0 | | o
Y ~ l Y | ~ v J
~s2 | ~st2 | ~32 ~s32
| [
Y I § | v J
~33 | ~st3 | ~s3 ~ss83
| I
Y Fy - | v h g
~311 | ~st11] ~s11 ~ss11
0 I [
~ Y’ e | v’ b
~s12 | ~st12] ~s12 ~s512
I |
Y lY | v J
~s121|~st121] ~$121 ~ss5121
___________________ |_ - - - - -
Y Y Y Y Y ¥ I v |y v hg
~tsl ~ts2 ~ts3 ~tsll~ts12~ts121] ~tt | ~tq | ~t ~ts
0 Y |y | |v J
~ | ~rt | ~2g [~z | ~rs_]
— — - - (4.1)
After tearing, the nested subcircuits N11 and Ny, are torn away

from Ni; is tora away from N;; and the tearing nodes of these

N2y

nested subcircuits are placed on the border of the matrix. This

scheme has the following characteristics:

(1) It is easy to implement. The subcircuit tearing can be dome in

the ©preprocessing phase and the anmalysis part of SLATE need not
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be changed.

(2) The number of subcircuits and tearing nodes is usnally 1large
and the sizes of the subcircuits are small; the maximum amount

of tearing is carried out.
(3) More latency checking is required than for scheme 3,

(4) The percentage of latency exploitation is high. Since the sub-
circuits are smaller and more nomerous, it is more likely to

find a latent subcircuit.

4.3. Scheme 3: Levelizing the Subcircuits

In this scheme all the nested subcircuits inside other subcir-
cuits are expanded to form a circuit with only one level of subcir-
cuits with new elements from the nested subcircuit calls added to the

'parent’’ subcircuit, It has several characteristics.

(1) It is easy to implement; subcircuit expansion can be done in the

preprocessing phase,-

(2) There is less tearing since the nested subcircuits are expanded

instead of torn apart as in scheme 2.
(3) Less latency checking is required than for scheme 2.

(4) The percentage of latency exploitation is wusually less than
scheme 2, Since the subcircuits are larger and less numerous,

it is less likely to find a latent subcircuit.

e
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. 4.4. Experimental Results

To choose between schemes 2 and 3 we shall comsider the tradeoff

ff between the amount of tearing and the savings in analysis time. The
amount of cpu time the program spent in transient analysis can be
— divided into three classes:
(1) The time used in evaluating the device models., (This is not
affected by node tearing.)
"\.

(2) The time used in solving the matrix equations using LU factori-

zation and forward and backward substitutions.
{(3) The time spent on checking the latency of the subcircuits.

In most cases, the time spent on (3) is negligible compared to

(2). However, if the «circuit is large and has a lot of latency,
n scheme 3 will be more efficient than scheme 2. Since the subcircuits
generated by scheme 3 is larger, less redundant latency checking is

needed. On the contrary, if the circuit is more active, scheme 2

will be more efficient than scheme 3 since it can exploit latency

more effectively using smaller subcircuits.

The following examples will show that the program user should
partition the circuit appropriately in order to maximize the bemefits

that can be gained from latency exploitation.
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Example 4.1 p
In this example the full adder circuit is analyzed. The adder }j
cell is implemented using CMOS logic gates (Fig. 4.3). There are )
three levels of tearing: -
(1) Level 1: The full adder cell is not partitioned, 44 MOS transis- 3
tors are comnmected together to form a cell with 6 tearing nodes.
(2) Level 2: The cell is partitioned into 2 XOR and 3 NAND gates
with 9 tearing nodes.
(3) Level 3: The cell is partitioned into 9 NAND gates and 4 invert- ..
ers with 17 tearing nodes, 3
Note that this is not the most efficient way to form the full e'
adder circuit, this implementation is used so that tearing and sub- )
[
circuit nesting can be illustrated more clearly. The IOR, NAND and - ;

inverters consist of 16, 4 and 2 MDS transistors respectively.

Two types of input waveforms were applied to test the effects of

tearing on the analysis time:

(1) All the input bits to the adder cell rise from 0 volts to §

volts. This will cause the maximum amount of circuit activity.

(2) Only one input bit to the adder cell changes from O volts to 5§

volts. The circuit should have a larger amount of latency.
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Fig.4.3 (a) CMOS Ianverter (b) CMOS Two Input NAND Gate
{(c) XOR Gate
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(Analysis time

One and two bit full adders were simulated,

marized below in Tables 4.1, 4,2, 4.3 and 4.4:

NUMNIT

76
76

76

Table 4.2 One Bit Adder Circuit -
(Analysis time = 20 ns,

:

17

78

76

Table 4.1 One Bit Adder Circuit — All Inputs Changing
20 ns, 44 MDS transistors)

TRANAN

38.22s

35.15s

34.57s

One Input Changing
44 MOS transistors)

TRANAN

38.35s

32.08s

28.70s

% LATENCY

% LATENCY

27

the results are sum—
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Table 4.3 Two Bit Adder Circuit — All Inputs Changing '
(Analysis time = 40 ns, 88 MDS transistors)

Tearing —
Level INLATN ITOTAL NUMNIT TRANAN % LATENCY e

1 114 122 122 115.73 6.08
2 486 700 140 116 .85 30.64

3 1039 1495 115 98.63 30.52

Table 4.4 Two Bit Adder Circuit — One Input Changing

P (Analysis time = 40 ns, 88 MOS tramsistors) —
E Tearing
? Level INLATN ITOTAI, NUMNIT TRANAN % LATENCY

1 120 126 126 121.57 5.00
* 2 468 630 126 108.05 25.69

3 1256 1976 152 117 .12 36 .42 =
g
t where .
é -

INLATN = Number of nonlatent subcircuits times the number

. of iterations '
b
t ITOTAL = Number of subcircuits times the number of iterations
‘ NUMNIT = Number of iterations in the transient analysis
: .
I TRANAN = cpu time spent on transient analysis (seconds)

% LATENCY = 100% times ( 1 - INLATN/ITOTAL ) is the




3

29

measure of latency exploitation in
the program.
We note that when the input is very active (all inputs changing)
and the circuit is small (one bit adder), it is more advantageous to
partition the circuit into smaller blocks so that 1latency can be

exploited effectively.

However, if the circuit is larger and less active, the overhead
introduced by 1latency checking can be significant. In the two bit
adder with one input changing circuits, the circuit with 1lots of
tearing (level 3) has many tearing nodes and a large equation matrix
border. Although the percentage of latency exploitation is much
higher than the circuit with less tearing (level 1), there is almost

no savings in analysis time.

In the worst case, the overhead spent on latency checking can
outweigh the savings in cpu time gained through by—passing the
analysis of the latent subcircuits, Thus, it is important for the
program user to tear the circuit in the appropriate sizes and at the

appropriate nodes in order to maximize the benefits that can be

gained from SLATE.
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CHAPTER § -
CONCLUSIONS
A
In this report we reviewed the algorithms and some of the common
problems that are faced by the ''standard’ simulators. We then intro—
duced the SLATE program that uses latency and tearing techniques to
alleviate those problems. — {-\ [C[73
The problem of nested subcircuits was investigated. Three =
schemes were proposed to process the nested subcircuit structures.
The amount of tearing and latency checking differs in each scheme.
Some sample circuits have been tested to study the effects of the =
amount of tearing on the performance of the simulator. The results
showed that the program user should partition the circuit appropri-
ately in order to gain the maximum savings of analysis time in the :
SLATE program.
o
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APPENDIX

PROGRAM REFERENCE GUIDE FOR SLATE

The purpose of this appendix is to describe the organization,
data structure and table specifications of SLATE. Program users
should refer to the appendix of [4] for a full description of the

functions and usage of the program,

A.l1. Introduction

SLATE is a general purpose circuit simulation program that per-
forms nonlinear dc and nonlinear transient circuit analyses. This
appendix describes the internmal design of the program. For the funda-

mental theory and device models used, refer to [3] and [4].

The SLATE program consists of 18,000 Fortran77, C and assembler
statements divided into six major overlays: READIN, ERRCHK, SETUP,
DCTRAN, DCOP and OVTPVT. Since the program was developed from SPICE2
their program organization and data structures are very similar,
Hence, this report will focus on describing the parts of SLATE that
are different from SPICE2 (i.e., the SETUP and DCTRAN overla; s that
utilize node tearing and latency exploitationm), For a full descrip-
tiom of the rest of the program and the tables and common blocks

used, refer to the SPICEZ Report [7].

. \'“. :
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Section A.2. briefly describes the dynamic data management
techniques that are used in the program. It can be omitted by readers
that ‘are already familiar with the memory management techniques nused
in SPICE2. Section A.3. describes the overlay root. Sections
A.4. and A.5. describe the readin and error checking procedures;
Sections A.6. and A.7. describe the setup and analysis procedures in
detail. Sections A.8. and A.9. gives a summary of the table and com
mon blocks that are used in SLATE. Finally, a sample circuit descrip—
tion using nested subcircuit calls is included. To conserve space,
the tables and common locks that are also present in SPICE2 are not

listed again,

)
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. A.2. Memory Management System

With the exception of most flags, all the data in SLATE are
stored in the form of managed tables in the /BLANK/'artay VALUE,
which can be redimensioned in the main program according to the
memory availability at each user site., The VAX release version of

SLATE assumes the virtual memory feature and dimensions VALUE() to

100,000 double precision words.

FUD )

The memory manager in SLATE controls ‘‘tables’’ unsing '‘table

I pointers'’. A 'table’ is a block of memory; a "table pointer’ is a

-lL._l'AAl

variable which serves to ideantify a block and to indicate the origin
of the block in memory. In SLATE, all the data values are stored in
. the array VALUE or NODPLC, which are declared to be -equivalent.
NODPLC stores integer data while VALUE stores double precision data. ji
As an example, suppose we have a table IUR of size 100 which contains
- integer data and another table LXY of size 50 which contains double N
precision real data., Then the contents of these tables can be &
accessed as nodplc(IUR+1) through nodplc(IUR+100) and value (LXY+1) :5

through value (LXY+50), respectively. [

The set of procedures that is used to manipulate these tables

are:

e e e e -
RPN

-

)
f

eatrv description

—edd

- SETMEM initialize the memory manager.
(' GETMEM(P, S) makes a new managed table of (words) size S
pointed to by tp (table pointer) P.
RELMEM(P, S) reduces by S words the size of the table
pointed to by tp P.
EXTMEM(P, S) extends by S words the size of the table

»

1

K LR
s’ s & 4 &

b
.
PP WO P
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pointed to by tp P, ‘ —:
SIZMEM(P, S) sets S to the size in words of the table
pointed to by tp P.
PTRMEM(P1,P2) changes the tp for the tables pointed to by =
tp P1 and P2. .
CRUNCH forces a compaction of the dynamically managed
menory. -
‘ A "table entry’ table is maintained by the memory manager to -

keep track of all the tables allocated by the program. This table

contains a four word entry for each table allocated of the form:

h word contents

4 —_—

’ 1 table origin (array subscript of NODPLC)

[ 2 allocated table size (in words)

- 3 requested block size (in words)

'h 4 address of table pointer -
[

) e
:; Whenever a table management routine is called, it will check for -
2 .
i the validity of the table pointer and the size of the table. Any

3

internal error in memory management that is trapped will stop the

execution of the program and cause the "table entry' table to be

1
L printed by the subroutine DMPMEM.
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A.3. The Overlay Root

The overlay root drives the rest of the program. It «calls the
first level overlays to process the circuit description, performs
error checking, sets up the matrix structure, analyzes the circuit
and outputs the results. The root consists of the main program and
the subroutines SETMEM, COMPRS, MEMPTR, DMPMEM, TMPUPD, OUINAM, ALF-
NUM, FIND, DCOP, MOVE, COPY, ZERO, SECOND and LOCF, A flowchart of

the main program is:

initialize;
while (.not. end—of-input)
{call READIN; call ERRCHK; call SETUP;
repeat
{ TEMP=next analysis temperature; call TMPUPD
if (dc transfer curves requested)
{MODE=1, MODEDC=3; ‘
call DCTRAN; call OVTPVT;}
if (dc small signal operation point requested)
{MODE=1, MODEDC=1;
call DCTRAN; call DCOP;}
if (transient analysis requested)
{MODE=1, MODEDC=2;
call DCTRAN; call DCOP;
MODE=2;
call DCTRAN; call OVTIPVT;}
}
until (no more analysis temperature)

}
stop

The variables MODE and MODEDC control the type of analysis that

is performed; they are discussed in Section A.7.

The READIN overlay reads in the <circuit description and sets
certain flags that indicate what analyses are reguested. It builds

the linked lists that store the input data. The ERRCHK overlay per-
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forms miscellaneous error checking. The routine renumbers the nodes
in ascending order (starting with the ground node as 1) and checks
the correctness _of the device models used. It also expands all the

subcircuit calls and checks the topology of the circuit.

The SETUP overlay constructs the matrix pointers that are used
to manipulate the matrix coefficients in the DCIRAN overlay. A
reordering scheme that avoids zero pivots is implemented. Node tear-
ing and sparse matrix techniques are used to order the matrix into
the bordered block diagonal form (BBDF) that is used later in DCTRAN

to facilitate the latency exploitation scheme in analysis,

The DCTRAN overlay performs the dc operating point, dc transfer
curve or transient analysis as determined by the variables MODE and
MODEDC. Latency properties are being exploited at (1) the time level,
(2) the subcircuit level, (3) the device level, and (4) tﬁe Newton
Raphson level to reduce the analysis time. The details of the latency
exploitation scheme are given in Section A.7. Finally, the OVIPVT
overlay generates the tabular output listings and the plots from the

results of the analysis.,

The overlay root contains several utility subroutines that are
used tharoughout the rest of the program. A brief description of them

is given below (A and B are array names):

pame(arguments) description

WVE(A,ILB, T, N) move N characters from B to A, starting
at the J'th and I'th character positions
respectively; eight character/word is
assumed.

COPY4(A,B,N) move N integers from A to B

N - PO S U S S S S SR R ol SR R SR SR R T RS Y
T IR - \....\‘.\\\_\\j
',L'\' RS A_:AAI!-L{M Ly *
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COPY8 (A, B, N)
COPY16(A,B, N)
ZERO4 (A, N)
ZERO8 (A, N)
ZERO16(A, N)
LOCF (LTAB)

COPY4(), but for real variables
COPY4(), but for complex variables
ZERO A(1) to A(N) integers

ZERO4 (), but for real variables
ZERO4 (), but for complex variables
give the address of the variable LTAB

37
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A.4. READIN Overlay

The READIN overlay of SLATE is very similar to the one found in
SPICE2, It consists of subroutines READIN, GEILIN, CARD,
KEYSRC, EXINAM, RUNCON, OUTDEF and NXTCHR. This overlay processes the
input data and builds the linked lists which describe the circuit to
be analyzed and sets certain flags in the common blocks to indicate

which analyses have been requested,

A.4.1. Readin

The subrountine READIN processes elements, device models, subcir
cuit definitions and the force and initial control cards. The routine
first calls SETMEM to initialize the memory management system, It
then <c¢calls subroutine CARD to read in each card. Subroutine FIND is

then called to preset storage for each input element, Analysis and

woi

other control cards are processed by RUNCON., A flowchart of this sub-

routine is: =

call SETMEM; -
read title; if (end-of-file found) exit :
initialize;
call CARD; if (end-of-file found) exit
NSBCKT = 0;
repeat
{
{element description: process in READIN
.SUBCKT : set NSBCKI=1,process in READIN
. ENDS : set NSBCKT=0,process in READIN
.FORCE : process in READIN o
. INITIAL: process in READIN -
. END : exit
other '’’’ lines, call RONCON
}

o
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call CARD;

} until (end-of-file reached)

exit

The program sets the value of the variable NSBCKT to omne if a
subcircuit definition card is encountered and resets it when the sub-
circuit definition ends. Note that only ome 1level of subcircuit
definition is allowed and all model and control cards must not be
enclosed within a subcircuit definition., The variables in the common
block /FORCE/ will be set if a .FORCE or .INITIAL card is read (see

Sectior A.9.).

A.4.2. Forward References

Since SLATE does not require the circuit description read in an
ordered fashion, sometimes an element may be referenced before it is

sctually read in. For example:

.DCV1IOS .5
(other inputs)
Vi 6 7 DC
(other inputs)
.END
The voltage source V1 is referenced by the ''.DC’' statement
before it is actually read in. FIND will reserve a linked list ele—
ment for V1 and then store an undefined flag ''.UN’ in nodplc(loc+2)

of that element, If V1 is defined later, nodplc(loc+2) will bde

filled by some integer datum that is not equal to ’'.UN’' thus,

resolving the forward reference problem.
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A.4.3. FIND

The FIND subroutine is used to locate a particular list element
or to allocate storage if the element cannot be found. It has four

parameters:

parameter description

ANAME name of the linked list element

ID id number of the list to search

LoC subscript of NODPLC, set by FIND to the
location of the element

IFORCE 0=> no restriction

1=) element must not already exist
2=) element is created by subcircuit expansion

A flowchart of FIND is given as follows:

if (NSBCKT.eq.0) then
element in the nominal circuit or device model card
search LOCATE(ID) list for ANAME;
el se
element inside a subckt definition
search (ISBCKT+NSBCKT) list for ANAME;
endif -
if (element not found) then
{ if (IFORCE.eq.2) then
reserve space according to COMMON /LNODS/;
el se
reserve space according to COMMON /LNOD/;
endif
set nodplc(loc+2)=".UN% (forward reference)
if (NSBCKT.ne.0) nodplc(loc-1)=ID;
return;

else if (IFORCE.eq.0) then
not an element definition request, return;
else if (nodplc(loc+2).eq. '"UN) then
element already referenced but not read in yet;
return;
el se

element defined already,((loc+2).ne.’.UNY,
attempt to redefine element, set NOGO=1;
return;

endif

= AAREMRCIAY e R T P o ey
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FIND is called by the READIN and RUNCON subroutines during
readin of the circuit description and also by the SUBCEKT subroutine

during subcircuit expansion.

When called by READIN, IFORCE is set to 1. The routine first »
determines the value of NSBCKT; FIND searches the LOCATE(ID) linked
list, if NSBCKT is zero (element inside the nomimal circuit), or the ;j
(ISBCEKT+1) 1linked 1list if NSBCKT 1is one (element inside a subckt !
definition). If the element is not in the list, FIND will allocate
space for it and returns (a new element is read in). Otherwise, the -’
element is already in the list, there are two possibilities: (1) The

element was referenced by some other cards before (see the previous

section) and nodplc(LOC+2) is set to '".UN% this is acceptable and

the routine returns., (2) An error occurred since the program tries

e
Ado s A a4

to redefine an element that already exists.

r

e tate e e x ety e ey e
*» §_ ¥ 2 3 ’ . v
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When called by RONOON, IFORCE is set to 0. FIND searches for
the element in the same manner as described above. When an element is
not in the list, FIND will allocate space for that element and set

(LOC+2)~"'".UN’ (an element is referenced but not defined before).

o

When called by SUBCKT, IFORCE is set to 2., The program wants to

expand the elements inside the subcircuit calls into the nominal cir—

e e e
a DR

I"

EERIE
Ahod A A

cuit anu reserve space for them accordingly (see the ERRCHK overlay).
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A.4.4. ROUNCON

RUNCON determines what type of analyses to perform. It sets the
variables in common blocks DC, TRAN, MISCEL, STATUS, FLAGS and

OUTINF. A detailed 1ist of these common blocks is given in [7].

A.4.5. Storage

All input data to SLATE are maintained in the form of 1linked
lists stored in the table IELMNT. Elements in the nominal circuit
and elements inside a subcircuit definition are stored in a different

manner,

Elements in the nominal circuit, device models and run condition
information are stored as linked list elements. Each kind of element
(e.g., R, C, and NMOS model definitions) are stored in a separate
linked l1ist identified by an ID assigned by the program (e.g., the ID
of resistors is 1), The beginning of the linked lists of element type
ID is pointed to by the contents of the array LOCATE(ID), which is a

subscript of nodplec,

Each list entry contains a 'next pointer’ that points to the
next element in the 1list (a zero pointer demotes the end—of-the—
list). Each entry also contains a VALUE subscript, usually called

LOCV, that points to the first word of the real valued storage of the

list element,
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. The elements inside a subcircuit definition are ordered into a
linked 1list according to the size of their ID, with the element with
the smallest ID located at the head of the 1list. The subcircuit

g definition forms a linked list pointed to by LOCATE(20) and each of

[
Lo

them contains a pointer to their subcircuit elements list as shown in

Fig. A.1. Note that the names of the elements inside a subcircumit are

strictly local.

"“‘\
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A.5. ERRCHK Overlay

The ERRCHK overlay finishes the processing of input data and
performs miscellaneous error checking. The overlay consists of rou-
tines ERRCHK, SHLSRT, PUINOD, GETNOD, SUBCKT, FNDNAM, ADDELT, NEWNOD,
CPYTAB, LNKREF, FELPRNT, MODCHK, TOPCHK, LINK, PUTSNO, GETSNO, NESTX
and RELINK, A flowchart that describes the program flow of this

overlay follows:

check forward references;

construct ordered list of nodes;

call SUBCKT to expand subcircuit calls;

link unsatisfied references;

set source function defaults and limits

call ELPRNT to print circuit element summary;

call TOPCHK to check topology and print node table;
invert resistance values;

change K to M for mutnal inductance;

finish breakpoint table;

check analysis limits;

sequence through the output list;

store the number of elements;

rel ink expanded subcircuit back to subcircuit call;
call MODCHK to check and print device models;

call NESTX to process nestaed subcircuit calls;

call NODRES to reserve intermal node for devices;
call RELINK to process subcircuit definitions;

A.5.1. Forward Reference Check

After all the input data are read, all elements that are refer-
enced by other cards should be defined. Thus the contents of
nodplc(LOC+2) of all the elements should be filled by some integer

data that are not equal to '.UN’. ERRCHK sequences through the ele-

ment list to check that there is no element that is referenced but
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not defined in the circuit description.

A.5.2. Ordered Node Tables

The nodes used in the input circuit description can be any posi-
tive integer with the ground node equals to 0 (e.g., 0,10,4,888, and
76) . ERRCHK renumbers the user defined node numbers into a consecu-
tive, compact node set starting from one, The new, ordered node
numbers will be stored in place of the user defined nodes at all ele~-
ments, and these new nodes will be used throughout the rest of the

program.

A translation table JUNODE is constructed to give the relation
between the user—defined node set and the node set used in the pro-
gram, The ground node in the program is always set to 1. If the
program node is i, the user’'s node is nodplc(JUNODE+i). For example,

if the user'’s specified nodes are: 10, 90, 0, 45 and 80, then,

user’s node renumbered node JUNODE table
0(ground) 1 nodpl ¢ (JUNODE+1) =0
10 2 ( +2)=10
45 3 ( +3)=45
80 4 ( +4) =80
90 5 ( +5)=90

A.5.3. Subcircuit Expansion

ERRCHK expands out all the subcircuit <calls into the mnominal

circuit level to check the correctness of the circuit topology and to
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count the number of elements and devices, The elements created from
subcircuit expansion are relinked back to the corresponding subcir-

cuit calls later in the routine.

After the READIN overlay, all the subcircuit definitions are
stored in the 1ID=20 list and all the subcircuit calls (x—elements)
are stored in the ID=19 list, The subcircuits are expanded using the

algorithm given below:

10cx=LOCATE(19); (pointer to the 1lst subcircuit call)
while (locx is nonzero)
{ call FNDNAM to determine subcircuit;
check for recursive definition of subckt calls;
call ADDELT to add element data;
loc=first subckt element;
{ call FIND to add element space loce;
(loce~1)=locx, save address of parent;
call ADDELT to add element data,
loc=pointer to next subckt element;

}

locx=pointer to next x—element;

The subcircuits are expanded in a 'top—dowr’ manner. All
nested subcircuit calls (x-elements) defined within a subcircuit
definition will ©be added into the ID=19 list and these nested x-
elements will be expanded accordingly ontil the ID=19 1list is

exhausted. A list of the element pointers and variables used follows:

ptr to element description

locx z—-element table

locs subckt definition table
loce new element added

locv real-valued storage

T
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3

variables description
NUNODS no. of user nodes
NCNODS node count

NUMNOD total no. of nodes

FNDNAM is called to determine the location of the subcircuit

definition that is referenced (locs). Then SUBCKT checks for any
recursive definition of subcircuit calls. The elements in the 1list
pointed to by (locs+3) are added into the nominal circuit level using

subroutines FIND and ADDELT. A dummy name dble(JELCNT(ID)) is used

when <calling FIND to avoid any name conflicts that might occur. Then

(loce—1) of the new element is, set to locx (the pareant subcircuit

call that invokes the adding of this element). o

A.5.4 Further Error Checking

The routines TOPCHK, ELPRNT, MODCHK, LNKREF and other error i

checking oprocedures are very similar to their corresponding parts in

SPICE2; their description is not repeated here,
(j
-

A.5.5 Breakpoint Tables

In transient analysis, SLATE always uses a program calculated ﬁi
time step regardless of the user—specified print interval, However,

the independent source waveforms frequently have sharp transitions

which would cause an unnecessary reduction in the time step in order -
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to find the exact transition time, To overcome this problem, ERRCHK

generates a breakpoint table LSBKPT, which contains a sorted list of

all the transition points of the independent sources. During the

transient analysis, whenever the next time point is sufficiently

close to the breakpoints, the time step will be adjusted so that the

program lands exactly on the breakpoints.,

A.5.6.

Relink

After the error checking and processing above, the elements that
were expanded from the subcircuit into the nominal circuit are linked

back into their subcircuit calls using the following algorithm:

10cx=LOCATE(19); (pointer to first subckt call)
{ for (ID =1 to 14)
{ while (loc is nonzero)
{ if( (loc-1) equals to locx) then
remove element from ID list;
add element to list pointed to by (locx+4);

endif
loc=pointer to next element;
}
}
locx = pointer to next x element;
}
A.5.7. Nested Subcircuit Calls
The subcircuits that contain nested subcircuit <calls are pro-
cessed by the routine NESTX. After subcircoit expansion, tke nested

subcircuit calls will be flattened out and all the x—elements will be

RTINS T I
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added to the ID=19 list with the pointer to their 'Parent’’ stored in
{(locx—-1). The routine NESTX rearranges the subcircuit calls and

definitions such that the nested subcircuit calls will be transformed o

! into onme level subcircuit calls. The algorithm of NESTX is given as ff
b
' follows:
locp = LOCATE(19); (pointer to first x—element) -
while (locp is nonzero)
{ loecx = pointer to first element after locp;
while (locx is nonzero)
{if ( (locx-1) .eq. locp) then
add nodlst of locx element to g
nodlst of locp element; -
endif
locx = pointer to next x—element;

}
remove redundant nodes in locp;
locp = pointer to next x—element;
} -
locs = LOCATE(20); (pointer to first subckt definition) =
while (locs is nonzero)
{ loce = pointer to first element; o

while (loce is nonzero) '
{ if ( loce stores an x—element) then

add nodlst of x—element to nodlst -
of subckt definition at locs; -
remove x~element from list;

endif
loce = pointer to next element;
}
locs = pointer to mext subckt definition;

}
assign new node numbers for x~elements;
remove empty x—element from ID=19 list;
remove empty subckt defimition from ID=20 list;
NESTX scans the ID=19 and ID=20 lists and determines the nesting
relationships between the x—elements., The nested x-elements are torn
away from their 'parent’’ x~elements. The nodes of the parent that are

connected to the nested x-element it contains are now considered as

external nodes and are added to the external node list, NESTX then o

..........
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. renumbers these new tearing nodes accordingly.

The nested x—elements that are expanded into the nominal circuit
- level in the ID=19 list will remain there throughout the rest of the
program, while those that are in the element list of the subcircuit

definitions ID=20 list are removed.

A.5.8. Reserving Internal Nodes for Devices
™ The device models used in SLATE may contain internal nodes [4].

NODRES checks the device parameters and reserves additional nodes for

the elements if necessary.

A.5.9. RELINK Subroutine

- The RELINK subroutine processes the subcircuits and performs

further error checking. A flowchart of RELINK is given as follows:

locs = LOCATE(20); (pointer to first subckt definition)
. while (locs is nonzero)
. { renumber nodes for subckt definition;
' store subckt information;
locs = pointer to next subckt def.;
}

sequence through the output list;
check initial and force comditionms;

SLATE requires a subcircuit to possess a compact and comsecutive

set of nodes with the external nodes ordered in the border of the

;::- BBDF matrix, RELINK renumbers the node set of each subcircuit in the




...........

ID=20 list and stores their information:

variables description -

NODSUB no. of internal nodes

in each subckt -
JSTOP no, of external nodes -

in each subckt -
NXUMVS no. of voltage defined

elements in each subckt
NXSTOP no. of equations in subckt

=JSTOP+NODSUB+NXUMVS

NXMAX maximum of all NXSTOP
NXTOP sum of all NXSTOP

The nodes of each subcircuit are renumbered and stored in place -
of the user defined nodes in each element in the list pointed to by

(loc+4) such that:

class of nodes renumbered nodes f'
internal nodes 1 to NODSUB
(ground = 1)
external nodes NODSUB+1 to
NODSUB+JSTOP
The internal nodes are renumbered from 1 to NODSUB corresponding a
N
to their size when they are defined in the user’s node list; the :j
external nodes are renumbered from  NODSUB+1 to  NODSUB+JSTOP =
corresponding to the order they appear in the subcircunit external -
node 1list, The routine then sequences through the output 1list and ﬂj
w

checks the initial and force conditions assigned to each subcircuit.
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! A.6. SETUP Overlay .
| o
- The SETUP overlay constructs the matrix structure from the cir i:ﬁ
- N
a cuit description. It consists of subroutines SETUP, NOFTRM, SREORD, :;ﬁ
- o

REORDR, SREOR, REOR, MATPTR, SWAP, SSWAP and RESERV, The algorithm

used in SETUP is given as follows:

store matrix locations for other elements of
the rest of the circuit;

1

.

3

locs = LOCATE(20); (pointer to first subckt definition) "i

3 while (locs is nonzero) e

X { loc = nodplc(locs+3);(beginning of element list) N

while (loc is nonzero) e

{ call MATPTR to reserve matrix locations; N

E loc =pointer to next element; ‘J

. ) -4

call SREORD to reorder subckt matrix; :;J

loc = nodplc(locs+3);(beginning of element list) Nt

g while (loc is nonzero) -

{ store matrix locations; e

; ‘ loc =pointer to next element; ____;
}

locs = pointer to next subckt definition; ?fé

} R

. for (ID =1 to 14) rest of the circuit :}3

N { loc =LOCATE(ID);(pointer to first element) NG

while (loc is nonzero) et

{ call MATPTR to reserve matrix locationms; ~od

call NOFTRM to set the size of tables; o]

loc = pointer to next element; S

} N

} o

locx = LOCATE(19); (first x—element) ]

while (locx is nonzero) ——

{ reserve matrix locations for the external o

nodes of the x—elements which form the -

border of the matrix; o]

locx = pointer to next x—element; ﬁf

} L

call REORDR to reorder rest of the circuit; e

store matrix locations for the x-elements; {}:

v .
Ut
4 3
» 5
A8

g e
A TN

SETUP sequences through all the subcircuit definitions, «calls

1
o

7 'l':l._"‘ .

subroutine MATPTR to build the sparse matrix structures, calls SREORD

1
{
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to reorder each of them, and then stores the matrix locations in the

elements,

SETUP then builds the matrix structure for the rest of the c¢cir
cuit with the interconnections., The external nodes of the x-elements
constitute the interconnection block of the equation matrix. SETUP
determines which nodes in the subcircuit and the rest of the circuit : E'
are connected with the external nodes and reserves their matrix loca-
tions in the border accordingly. The program then sequences through
other elements in the rest of the circuit and builds the sparse -
matrix structure, calls subroutine REORDR to reorder the matrix for

minimal fill—in’s and stores the matrix locations in each element.

A.6.1. Matrix Structure

SETUP deterﬁines the ID of each element in the circuit and calls -
subroutine MATPTR to build the sparse matrix structure. Let the )
equation matrix be denoted by A and the elements of A be ali,j),
where i denotes the row and j the column, MATPIR uses the element -
stamps described in the MNA (modified nodal approach) [8] to deter—
mine which locations a(i, j) of A are being filled by introducing that
element and calls RESERV to label those locations, The matrix loca-
tions are stored in two forms., In the matrix construction phase they
are represented in the form of linked lists. Later, the 1linked 1list A
structures are transformed into sets of matrix pointer systems, which

are used in the analysis part of the program.
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A

For example, if a resistor is connected to nodes 6 and 10, then
a(6,6), a(6,10), 2a(10,6) and a(10,10) of the equation matrix A will
be filled. MATPIR introduces a new equation for each voltage defined

¢lement (i.e., L, H, E, V) since each of these elements introduces a

new unknown current into the equations. (See the element stamps of

[81.)

The variables and tables used in MATPIR are 3

variable description

IBR no. of equations v

NUMVS no. of voltage defined elements 4

) table description fik
'i ISEQ loc of voltage defined element -
- ISEQID ID of voltage defined element o

NODEVS no. of VS connected to that node }{1

5 M
AN

—w
]

A.6.2. Reserving Matrix Locations -
- Subroutine RESERV reserves matrix locations for the anonzero ;:u
F -
L entries of the equation matrix., Suppose the program wants to reserve it

location (nodel,node2) (i.e., row nodel, column node2), the algorithm

g used in RESERV is
13 if (nodel or node2 is ground) return;
2 loc =ISR+nodel;(pointer to first nonzero

column number of row nodel)
if (loc is nonzero) then
search list for column nodel;
if (node2 is found) then
return;
el se
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add node2 to list pointed by ISR+mnodel

endif
el se
add node2 to list pointed by ISR+nodel
endif

A list of the tables used in RESERV is given below:

table description

NUMOFF (1 to N) no. of nonzero entries in each row
(N+1 to NUMSIZ) linked lists of node no.

NMOFFC no. of nonzero entries in each column

ISR pointers to beginning of lists in NUMOFF

NDIAG set to 1 if diagonal is nonzero

The table NUMOFF is divided into two parts: the first part of
NUMOFF and the table NMOFFC store the number of nonzero entries in
each éow and.colnmn. respectively, and are updated whenever a matrix
location is reserved., The second part of NUMOFF contains the linked
lists. Each entry in the ISR table, nodplc(ISR+i), poimts to the
beginning of the 1linked 1list which records the column numbers of
nonzero locations of row i. For example, if a(3,4) and a(3,6) are
nonzero, the list pointed to by nodplc(ISR+3) (row 3) should contain

the nodes 4 and 6 (columns 4 and 6).

To reserve (nodel,node2) the routine searches the ISR+nodel list
(row nodel) and determines if column node2 is in the list. If yes
(nodel,node2) have been reserved before and the program will return.

Otherwise the location is reserved by adding node2 to the list.

. v

o
]
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A.6.3 Compact Matrix Pointers

The linked list form structure used to set up the matrix struc-
E ture has the advantage that it can be modified easily. However, this
- form of representation is not convenient for the analysis, Thus,
: SLATE generates a compact matrix pointer system after all the nonzero f;
g matrix locations are known and uses them later in the analysis. i;é
The rest of the circuit and each of the subcircuits have their }{5
: own matrix pointer tables: the matrix locations of the rest of the E%f
circuit are represented by the tables IUR, IUC, ILR and ILC; while éi:
the corresponding tables of the subcircuits are IXUR, IXUC, IXLR and kiﬁ
IXLC. (See Section A.9.4. for the explanation of how the tables are E;f
stored.) Only the tables for the matrix locations of the rest of the ;33
circuit are described below. ;fﬁ
" The compact matrix pointer system is genmerated in the subroutine Sgﬁ
r REOR. It divides a matrix into three parts: the matrix diagonal, the ';*:‘
upper triangle and the lower triangle, The matrix diagonal is stored 2555
oy
? separately since it is not sparse. The upper triangle of the matrix Eiﬁ
_ is stored by the tables IUR (upper row) and TUC (upper column). The Ei:
P lower triangle is stored by the tables ILC (lower column) and ILR ?;3
i (lower row). S
3 ]
g Suoppose there are NSTOP equations. Then there should be NSTOP ;r;
{ rows and NSTOP columns in the equation matrix, The IUR table con ;g?
tains NSTOP entries, each corresponding to a row in the upper triam— ;is
gle. The i’'th entry of IUR, nodplc(IUR+I) points to the beginning of :?;

the part of the IUC table that stores the column numbers of the :}
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nonzero matrix locations in the upper triangle at row I. s
Similarly, the ILC tables have NSTOP entries each corresponding -
to a column in the lower trianéle. while nodplc(ILC+J) points to the
-
beginning of the part of the ILR table that contains the row numbers "
of the nonzero matrix locations in the lower triangle at column J. -
The variables used to describe the matrix pointers are
yariable = = description
NSTOP no, of equations _
NUT no, of nonzero entries in
the upper triangle
NLT no, of nonzero entries in ;
the lower triangle -
A.6.4. Storing the Matriz Locations a
The values of the matrix coefficients of the 'rest of the cir
cuit’’ sparse matrix equations are divided into three parts and
stored in the table LVN such that -
entries of LVN description i}
1 to NSTOP stores the coefficients of the -
matrix diagonal. :
NSTOP+1 to stores the NUT nonzero coefficients
NSTOP+NUT of the upper triangle,
"in parallel’’ with IUC. "
NSTOP+NUT+1 to stores the NLT nonzero coefficients -
NSTOP+NUT+NLT of the lower triangle,
"*in parallel’” with ILR. .
Thus, the matrix coefficients and nonzero locations can now be Ry

represented by a one~dimensional array. The actunal values of the

matrix coefficients will be loaded later by the subroutine YLOAD in
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the DCTRAN overlay. To minimize the loading time, each element in
the circuit should know the positions of the matrix locations it
introduces to the circuit, represented in the form of ‘offsets’ of

the LVN table.

The SETUP routine sequences through all the elements of the cir
cuit. Each element in the circuit introduces several nonzero matrix
locations into the equation matrix according to the MNA element
stamps, For each of these matrix 1locations SETUP finds their

equivalent offsets in the LVN table and stores them in the elements.

for (each element in circuit)
{ determine the matrix locations from the
MNA element stamp;
for (each of the matrix locations in stamp)
{ NODEXl=row number;
NODEX2=column number;
if (NODEX1 or NODEX2 is 1) then
one of the nodes is grounded,
INDX = 1;
else if (NODEX1l.eq.NODEX2) then
matrix location is on the diagonal,
INDX = NODEX1;
else if (NODEX1.1t.NODEX2) then
matrix location in the upper triangle,
search for column 'NODEX2'' of row
'NODEX1'* in the IUC table and let
its position be NS;
INDX = NSTOP+NS;
el se
matrix location in the lower triangle;
search for row 'NODEX1'' of column
‘NODEX2’' in the ILR table and let
its position be NS;
INDX = NSTOP+NUT+NS;
endif
store INDX in of the element;

Bl il g S e o
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A.6.5 Subcircuit Reorder .-
SREORD partitions the subcircuit variables into three subgroups
and reorders them. The algorithm used in SREORD is given as follows:
' -
; reorder the current variables into a subgroup; L
' swap the external nodes to the border;
X IFLAG = 0;
for (NEXNOD = 0 to NXUMVS) ‘:
{ call SREOR, reorder the I variables;
i }
l for (NEXNOD = NXUMVS+1l to NSTOP)
; { if (NEXNOD > NSEND) IFLAG=1;
} call SREOR, reorder the remaining .
variables; o
}
store the matrix locations in MXLOC;
After choosing the current variables and swapping the external
nodes to the border, the variables should appear in the following -
order:
position description
1 to NXUMVS current variables introduced by N
voltage defined elements
NXOMVS+1 to the rest of the variables
NSEND-1 N
NSEND-1 to external node voltages -
NSTOP
NSTOP = NSEND + NODXT -
NSTOP is the sum of the number of ’''intermal’’ subcircuit variables, :{
NSEND, and external nodes, NODXT. .
¥
Each subgroup is then reordered by SREOR using the Markowitz N
scheme, The row swapping and node renumbering are recorded by the k)
tables IXSWAP and IXORDR.
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Finally, SREORD determines the offsets of each of the matrix
locations in the matrix pointer system and stores them in the table

MXLOC.

A.6.6. Reordering the Current Variables

The algorithm used in SREORD to reorder the current variables
introduced by the voltage defined elements (L, H, E, V) is given as

follows [3]:

the external nodes are not reordered;
repeat (until all voltage sources are processed)
{ the ungrounded node of the grounded voltage
sources are chosen first as POSITIVE,
the voltage sources and nodes chosen
should not be chosen again;
whenever a node of a voltage source is
chosen as POSITIVE, the entry in the
NODEVS table of its negative node is
decreased by 1;
if the NODEVS value of a node is 1 then it
is selected as POSITIVE., Label the
voltage source and node so that they
will not be chosen again;
}

swap the external nodes to the border;

Each of the VS (voltage defined elements) in the subcircmit is
pointed to by an entry of the ISEQ table. The variable NXIV counts
the number of VS processed by SREORD. In the beginning, NXIV is set
to zero {i.e., no element is processed). Each time SREORD processes

an VS:

- NXTV is incremented by one

- the pointer to that element in the ISEQ table
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will be swapped aside so that it will not
be searched again in the next pass.

- the current variable corresponding to that VS
will be reordered ¢> the top of the variable
vector, according to the order that it was
chosen.

— the NODEVS entry of the POSITIVE node of that
element is set to 10000,

— store the direction of current flow ICPO

in the chosen VS element.

The choosing process repeats until all VS are processed (i.e.,

NXTV=NUMVS-1) .

The table NODEVS contains the number of voltage defined elements
connected to each node. This determines the order in which a node is
chosen as POSITIVE. The ungrounded node of the grounded VS are
chosen first, followed in turn by nodes with the least number of
number of VS connected to it. (The nodes with a smaller number of VS
connected to it have less off-diagonal terms in the matrix equa-—
tions.) To prevent any node from being chosen, NODEVS+node is set to
10000. (This represents a very low priority in the reordering

scheme,)

The direction of current flow in a VS is represented by ICPO.

Its value is one if current is flowing from the positive terminal of

the device to its negative terminal, otherwise ICPO=-1.

Sl el
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A.6.7 Rest of the Circuit Reorder

The equation matrix of the rest of the circuit is reordered by
the subroutine REORDR. The reordering scheme is almost the same as
the one used in subcircuit reordering. The current variables are
further divided as (1) Il and I,, (2) V_, and (3) the remaining vari-

ables. I, is partitionmed into groups of I ,, I ., and I .., which are

the currents introduced by independent, voltage controlled and

current controlled voltage sources, respectively.

After partitioning and processing of the current variables using
the scheme described in the previous section, each group of variables
is reordered using the Markowitz scheme by the subroutine REOR. The

offsets of the matrix locations in the matrix pointer tables are then

computed and stored in the table MLOC,

Lk f Kl A"

P S )

A s 8 n -




64
=3
A.7. DCTRAN Overlay -
The DCTRAN overlay performs the dc transfer curve, dc operating Lo
o
point, initial transient operating point and transient amalyses. The )
overlay consists of routines DCTRAN, DCDCM, COMCOF, TITER8, TRUNC, -
SORUPD, YLOAD, NTRPL8, EVTERM, NXTPWR, INTGR8, DIODE, BJT, JFET, MOS-
FET, and MOSFEQ1l.
The types of analysis to be performed are determined in the
overlay root and indicated by the flags described as follows: '
flag value meaning
MODE 1 dc analysis
(subtype defined by MODEDC)
2 transient analysis .
[ ]
MODEDC 1 dc operating point -~
2 initial operating point for
transient analysis e
3 dc transfer curve computation N
INITF 1 converge with ’'off’ devices allowed -
to float A
2 initialize junction voltages
3 converge with 'off’ parameter
held 'off’
4 {unused>
5 first time point in transient analysis i
6 prediction step
IGOOF 0 converged
other not converged -
A.7.1. DC Operating Point o
If both values of MODE and MODEDC are 1, the dc operating point e
is computed. A flowchart of this is given as follows:
initialize;
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ﬂ

TIME = 0.0; -

call SORUPD to set sources to time zero values; ;ﬂ

INITF = 2; o

call ITERS; s

print operating point;

The actual sparse matrix equation solution is carried out in the
subroutine ITER8., The value of INITF is set to 2 to initialize the

junction voltages.

A.7.2. Transient Initial Conditions

If the values of MODE and MODEDC are 1 and 2, respectively, the
DCTRAN overlay will compute a set of initial circuit conditioms prior
to the transient analysis. A flowchart for the initial transient

solution is given as follows:

initialize;
TIME = 0.0;
call SORUPD to set sources to time zero values;
INITF = 2;
call ITERS;
if (converged)
{ print solution;}

A.7.3. DC Transfer Curve

The dc transfer curve is simply a repetitive dc operating poiat
computation performed for a range of values for one independent vol-
tage or current source in the circuit. If the values of MDE and

MODEDC are 1 and 3, respectively, the dc transfer curve is computed,
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A flowchart of this is given as follows:

initialize; TIME = 0.0;
call SORUPD to set sources to time 0 values;
INITF = 2;(initialize junction voltages)
set all subckts to be nonlatent;
for (each source value)
{ if (INITF .ne. 2) INITF = 6;
{ call ITERS;
if (not converged) stop analysis;
locx = locate(19);(first subckt)
while (locx is nonzero)
{ check for the latency condition;
if (subckt is latent) then
nodplc(locx+9) = 1;

el se
nodplc(locx+9) = 0;
endif
}
store outputs;

All subcircuits are assumed to be nonlatent

66

the beginning.

During iteration, the program checks all the subcircuits for latency

at each of the source values using the conditions of equation (3.4).

The voltage values of the present and previous iteration points are

stored in tables LVIML and LDO, respectively.

The analysis of subcircuit Nk will be omitted in

tion point and afterwards until it is determined

again,

After the first sweep point, the value of INITF
The piecewise nonlinear method [3] is used to predict

the next sweep point and used as the initial guess at

tion.

the next itera-—

to be nonlatent

is set to 6.

the solution at

the next itera-

. X
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A.7.4. Transient Analysis

The transient analysis is performed if MODE=2. A flowchart of

the transient analysis is given as follows:

savout :
newtim:

tsterr:

tsdel:

initialize; TIME=0.0; DELTA=TSTEP;
INITF = §;
store outputs in LOUTPT table;
TIME = TIME+DELTA;
if (TIME > TSTOP) exit;
{ adjuost DELTA for breakpoint table values;
call SORUPD;
call ITERS;
}
if (comverged) goto tsterr;
{ TIME = TIME-DELTA;
DELTA = DELTA/S;
goto tsdel;
}
locx = LOCATE(19); (first subckt)
while (locx is nonzero)
{ if (all external nodes are latent) then
{if (nodplc(locx+9).ne.1l) then
nodplc(locx+9) = ~-1;
endif
}
else
nodplc(locx+9) = 0;(nonlatent)
endif
locx = nodplc(locx);
}
call TRUNC;
if (error acceptable) goto savout;
{ TIME = TIME-DELTA;
DELTA = DELNEW (computed in TRUNC);
}
if (DELTA ¢ DELMIN) stop analysis;
goto newtim;

There are four different latency conditions possible for a sub-

circuit:

(locz+9)

0

ey

condition of subeckt

not latent

latent at the time level
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(determined in TRUNC and DCTRAN)

-1 latent in Newton~Raphson iteration
(determined in ITERS)
-2 all energy storage elements are latent

(determined in YLOAD)

The scheme 2 proposed in [3] is used to determine the latency in
time. After each iteration time point, DCIRAN checks the external
node voltages of each of the subcircuits: (1) If the changes of all
the external node voltages between the previous and present time
points are less than the tolerance and the subcircuit is originally
latent in time, it remains latent in time (see equations (3.3) and
(3.9)). (2) If all the external nodes are latent but the subcircuit
is not latent in time, it is declared to be latent in the N-R itera-
tion. (3) If the external node voltages are not latent, the subcir

cuit is declared to be nonlatent.

A.1.5. Determining the New Time Step

The estimation of the new time step to be used is performed in

the subroutine TRUNC. The algorithm used in TRUNC is given below:

DELNEW = TSTOP;
for (each of the emergy storage elements)
{ ©branch to TERR; }
locx = LOCATE(19)
while ( locx is nonzero)
( if (subckt latent in time) goto nxckt;
INEED2 = 0;
if (subckt latent in N-R iteration) INEED2=1;
for each (energy storage element in subckt)
{ branch to TERR;
}
if (subckt lateat in N-R iteration) then
nodplc(locx+9) = INEED2;
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endif

nxckt: locx = nodplc(locx)

}

TERR: find current and charge error tolerance;
estimate new time step DEL for this branch;
if (element is not slowly varying) INEED2=0;
DELNEW = min(DELNEW, DEL) ;

The program checks if all the emergy storage devices inside the
subcircuits are slowly varying (equation (3.8)) and sets the value of

nodplc(locx+9) accordingly.

The actual Newton Raphson iteration is controlled by the subrou-

tine ITERS. The algorithm used in the subroutine is listed below:

ITERNO = NONQON =0;
done = ,false,
while (not done)
{ call YLOAD;
if ((NOSOLV is nonzero) and
(analysis is initial transient)) exit;
ITERNO = ITERNO+1;
switch (INITF) of
{14 if (NONOON=0) exit;
goto solve;
'"2'% INITF=3; goto solve;
' 3'% if (NONCOON=0) INITF=1;
goto solve;
” 4”’1' 5""' 6’& INITF=1;
solve:
if (ITERNO>iteration limit) exit;
if (IFINI is nonzero) force node voltages;
call DCDCMP;
call DCSOL;
NONTMP = NONOON;
NONCON = 0;(.done.)
if (NONTMP=0 and not 1st iteration) then
if (NOT ALL circuit node voltages
converged) NONCON=NONCON+1;
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endif
locx = LOCATE(19); (first subckt)
while (locx is nonzero)
{ if (all external nodes converged) then
if (nodplc(locx+9)= 1 or —1) goto nxtckt;
if (nodplc(locx+9)=-2) nodplc(locx+9)=-1;
el se
nodplc(locx+9)=0;
endif
goto sdcsol;
if (NOT ALL internal node converged) then
NONCON =NONCON+1;
nodplc(locx+9) = 0;
endif
nxtckt: locx = pointer to next subckt;
}
}

sdcsol: back substitution to solve subckt equation;

ITER8 first calls YLOAD to load the equation matrix and decom—
pose the subcircuit matrices. It them calls DCDCMP to LU factorize
the rest of the circuit and interconnection matrix and calls DéSOL to
solve them (steps 3, 4 and 5 of algorithm Sl). ITERS then checks and
updates the latency of the subcircuits and uses SDCSOL to obtain the

solution of each of the subcircuit blocks (step 6 of algorithm Sl)‘

Some subcircuits might converge in fewer iterations than the
others. They can be declared to be latent at the NewtonRaphson
level (nodplc(locx+9)=-1) if (1) nodplc(locx+9)=2 (determined in
YLOAD), and (2) all external and internal node voltages have com
verged. The loading, LU factorizing, forward and backward substitu-
tions of these latent subcircuits will be omitted until they are

declared to be nonlatent again,

If the program wants to force the node voltages (IFINI=1), it

will store the desired values of the variables in their positions in
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the solution table LVN and set their corresponding entries in the
NNDIAG table to —-1. The LU factorization, forward and backward sub-
stitution of the rows and columns corresponding to that node will be

omitted.

A.7.7. Element Load

The subroutine YLOAD loads the equation matrix, decomposes the
subcircuit matrices and carries out steps 1 and 2 of the equation
solution procedure S,. The algorithm used in the subroutinme is given

below:

LATENT = 0;(assume elements are latent)

for (id= 1 to 14)

{ 1load elements in rest of the circuit;
}

if (LATENT is nonzero) NONCON=NONCON+1;

locx = LOCATE(19);

while (loex is nonzero)

{ LATENT = 0;
if (subckt is latent) goto nsbekt;
LATENT = 0;

load elements in the subckt;
if (LATENT = 0) then
nodplc(locx+9) = =2;(all elements latent)
el se
NONOON = NONCOON+1;
endif
nsbekt: locx = nodplc(locx);
}
if (INITF = 2 or 3) NONOCON=1;
locx = LOCATE(19);
while (locx is nonzero)
{ decompose subckt submatrices, perform
forward substitution, goto sdcdem;
solve for y = W* a;

_____
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The matrix coefficients are loaded one element at a time, A -
concise description of how each element type is loaded can be found .
in [7]. The rest of the circuit is loaded first, followed by the ~
subcircuits, ?;
In order for a circuit or subcircuit solution to converge, all -
energy storage elements and controlled sources must remain latent =

(i.e., LATENT=0). The changes of their values between the 1last two

iterations must be less than the tolerance TOL (equation (3.8)).

1:

After loading, the matrices of the subcircuits are LU factorized

and forward substitution is carried out (step 1 of algorithm S1 of
[3]1) to solve for a, followed by step 2 to find the vector y. The N
results (stored in the table LIXVN) are subtracted from the source .

vector Itsk (the right—-hand side of the equation in step 3 of Sl) and
stored in the table LVN. )
s




.~ -"- _‘.“ A ""V"‘.'——"‘__'§ 'L_'—.". hAYC RN St sl i i Lo piic Sl ot et e et St St Jhate "R aric Shufe i it A iy Bt ol el Y S Ty

i
'}
4

"

o g a4

Py

I 73

,_
A e
s te Tre ty

| SR

! A.8. Linked List Specifications
52

|

The linked l1ist elements used in SLATE are essentially the same
e as those used in SPICE2 [7]. Only the specifications of the subcir-

cuit calls and definitions are given, All integer data referred to

P . P .
ot T EI N Tl T S T
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are stored in the array NODPLC; all real and character data values

are stored in the array VALUE. The NODPLC subscript of the 1linked

. L.. )
. )
i vy 2T

list element is called LOC, while NODPLC(LOC+1) stores the pointer
LOCV, which is a subscript of VALUE that contains the real valued

storage of that element.
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subckt info ' -~
next pointer '
Locy LOCV + 0: element name
tp(external nodes)
tp( subckt definition) RN
tp(element list) =
NOFFSV I
NODXT ¥
LXNOD X
: NXTOP
: latency flag 5
NDIST -
: tp(nodes and node voltages forced)
+12: size of forced node table at (locx+11) .
+13: tp(nodes and node voltages initialized) -
| +14: size of initialized node table at (locx+13) .

g
(]
[
o
+
Lol Siliitninddiinditni

c
8
SR 2k I B RN

CODTAWNEWNDKHO M

+ 4
VA
= o

FEIET SR

Comments:

(1) nodplc(locx+4) points to a linked list of elements expanded from

the subckt definitions (see the ERRCHK overlay).

Sy
= '-;‘..A_-t o x £

(2) nodplec(locx+7) points to the table LXNOD which stores the matrix

locations of the bordered block created by the tearing nodes. - i
1
(3) nodplc(locx+9) indicates the latency condition:

1 latent in time
0 not latent
-1 converged in N-R iteration .
-2 all enmergy storage devices and o
controlled sources converged =

(4) LDO+NDIST is the beginning of the table that stores the subckt -

et Bt e kMR L o eaascas

tearing node voltages.

o
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l' (5) The forced node table contains the list of nodes to be forced
and their wvoltage values, It is constructed when a ,FORCE card

is read with the subckt’'s name on it., If

AL St BN B B N AR
AT R
e e 4 A % & . Al n'aa o 3_o

LOCT = nodplc(locx+ll) = ptr to forced node table, and 5

NTMP = nodplc(locx+12) = size of LOCT table

then

- 4
LOCT+ 0: NODE »
1 ’ <
+ 1: Vv NODE ;= node to be forced 3
. + 2:N&E2 g
kw . + 3: v, V; = forced node voltage -
; |
+NTMP-2: NODE, »
+NTMP-1: V ~
_";
.I (6) The initialized node table contains the list of nodes to be ini- .
tialized and their values. It is constructed when a , INITIAL ;
card is read with the subckt's name on it. The data are stored E
!! in the same manner as in the force node table. :ﬂ
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A.8.2. Subgircunit Definition

ID = 20

-~ 1: subckt info
LOCS+ 0: next pointer

1: LOCV LOCV + 0: element name
: tp(table of external nodes)

: tp(element linked list)

: NISTOP

: NXUMVS

: NOFFSW

: NOFFUC

: NOFFLR

: NOFFML

¢+ NSEND

: size of the LXVN table

+12: NUT

+13: tp(old external node list)

R R EEIE:
Voo ~ITAh £ W

+ +
(WA
- o

Comments:

Size of LXVN table = no., of nonzero matrix locations + no, of

equa tions = NUT+NLT+NSTOP+NSTOP,

The user’s defined internal nodes are stored in a table pointed

to by nodplc(locs+13).
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? o A.9. Labeled COMMON Blocks

E E: The COMMON blocks that are used in SLATE only are listed below.

The COMMON block CY contains the tables and variables used 1in

setting up and reordering the matrix structure of the nominal cir—

cuit,
name description
NUMV 52 no. of independent voltage sources
NSTOP1 ptr to the beginning of the
I, equations
NSTCP2 ptr to the beginning of the V
equations

The other variables can be found in the SPICE2 report [7]; they

are not listed again.

The COMMON block contains the tables that store the tables used
in subckt reordering., The beginnings of the tables in CP3 are given
by adding offset valuwes, contained in CP2, to their corresponding

tables in this block.

ORI AT D P A0 AP IBAT A VAL AL P ¢




name

ISSWAP

ISORDR

ISTR
ISTC
ISLR
MSLOC

This COMMON block contains the offsets of the subcircuit tables

from the tables used in the COMMON block CP1.

name

NOé
X NOs
’ NO4
| & NOFFSW
NOFFUC
: NOFFLR
| o

‘ A9.4. CP3

name

IXSWAP
IXORDR
IXUR
IXLC
IXuC
IXLR
MXLOC

1 This COMMON block contains the saubcircuit tables used in SETUP

and the subckt matrix pointer tables.

78

description

IXSWAP=ISSWAP+NOFFSW
IXORDR=ISORDR+NOFFSW
IXUR=ISUR+NOFFSW

IXUC=1SUC+NOFFUC )
IXLR=ISLR+NOFFLR oy
MXLOC=MSLOC+NOFFML

description

{unused> -
”n

e

{see COMMON block CP1>
" e
(2] ”n

:",\

description

tp(record of equation swaps)

tp(record of equation reorder)

tp(IXUC indices) .
tp(IXLR indices) et
tp(nonzero columns in upper triangle) -
tp(nonzero rows in lower triangle)

tp(compact matrix pointers)
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A9.5. CM4

This COMMON block
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contains the individual subcircuit matrix

pointer tables and the tabies used in the matrix setup phase.

name
NOFFSV
NXTOP

NXMAX

A2.6. CPS

description

offset of LVN from the top of LSVN,
stored in nodplc(locxz+5)

offset of LXVIM1 from the top of LSVIM1,
stored in nodplc(locx+8)

the maximum no. of equations in one subckt

This COMMON block contains the tp that stores the subckt matrix

coefficients,

name

LXVN
LXYNL
LXYU
LXYL
LXVIM1
NXSTOP

A.2.1. CP6

description

tp(right—-hand-side of subckt equations)
LXVN offset: matrix diagonal terms

LXVN offset: matrix upper triangular terms
LXVN offset: matrix lower triangular terms
tp(previous subckt solution, copy of LIVN)
no, of equations in the subckt

This COMMON block contains the tables that store all the double

precision tables contained in the COMMON block CP5.

. .
. AR
PSP A
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pame

LLSVIM
LLSVN
LSVIM1
LSVN

A.3.8. <M

This COMMON block contains

equation reordering.

name

NXUMVS
NXUVS2
NXTOP1
NXTOP2
NSEND

A9.9. CP8

description

tp(used to create LSVIM1)
tp{used to create LSVN)
LXVIM1=LSVIM1+NXTOP
LXVN=LSVN+NOFFSV

the variables used

description

80

in subcircuit

no. of independent voltage sources

{unused>
ptr to the beginning of the V
{unused>

= NSTOP-NODXT = no. of subckt

equations

equations

- no. of tearing node equations

This COMMON block is used in subroutine YLOAD.

name

LATENT

A‘g'lo.

o)

description

=0 =) all energy storage devices are latent

This OOMMON block contains the subcircuit latency statistics.
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name description
o ITOTAL total no. of subckt times the total no. of
iterations
- ILAINT no. of nonlatent subckt times the no. of
- iterations for those subckt
- NNDIAG tp(nodes to be forced or imitialized)
(NNDIAG+node)=-1 =) LU factorization and .
b back substitution of the node should be 3
- skipped. (LXVN+node) contains the forced .
solution ‘ ]
"
:-J
‘F A.9.11  EXT =

This COMMON bdlock contains the variables that record the size

of the tables contained in COMMON block CP1,

name description r_z:

L

e NMXEXT size of MSLOC table N
NUCEXT size of ISUC table N
NLREXT size of ISLR table : g

N NUMEXT size of NUMOFF table j
: NUMSIZ ptr to the list of reserved nodes in y

the table NUMOFF (used in RESERY)

N
e

s
A.9.12. FORCE 3
. This COMMON bdlock contains the variables used in forcing or inmi- b
y tializing the node voltages. *‘1
< -]
) n
~ N
“ * 4
1

—
AR I
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name description
NOFOR no., of nodes to be forced o
IVFOR tp(values of forced node voltages) -
INFOR tp(nodes to be forced)
NOINI no, of node to be initialized e
IVINI tp(values of the initialized node voltages) -
ININI tp(node no. to be initialized)
IFINI =1 =) nodes have to be initialized .
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reuit calls:

* Four Bit Full Adder Using Nested Subcircuits
* two input nand gate: input(2) output vdd

ubckt nand 1 2
4 cmosp
cmosp
cmosn
cmosn

g.uwww

"
(RS TN
(=27 W - N
OO &
T e N T
Wounnu
wWWwwwa

'y

*a ABRE

nverter : input,
ckt inv 1 2 3
1 3 3 cmosp 1=3
100 cmosn 1=3

o »e

su

W BE,
2 oo

* exclusive
. subckt xor
x1 10 50 40
x2 20 60 40
x3 10 60 70
x4 20 50 80
x5 70 80 30
.ends

or gate
10 20 30
inv

inv

40 nand
40 nand
40 nand

* 1 bit full adder: imnput(2), cin, cout,

as=63
as=63
as=25
as=49

w=14
w=14
w=7
w=17

ad=63
ad=63
ad=49
ad=25

output, vdd
w=14 ad=63 as=63
w=7 ad=49 as=49

40

.subckt adder 1 2 3 4 5 6

x1 127 6 xor

x2 7 356 xor

*

x3 7 3 8 6 nand

x4 12 9 6 nand

x5 89 4 6 nand

.ends

* All

va 1

vdd 6 0 d¢ 5v

x1 11135 6 adder

x2 1149 10 6 adder
x3 119 13 14 6 adder
x4 11 13 17 18 6 adder

asd=42 ass=42

asd=42 ass=42
asd=28 ass=14
asd=14 ass=28

asd=42 ass=42
asd=28 ass=28

su m vdd

input bits changes fro m 0 volts to 5 Volts
0 pulse (0 5§ On 2n 2n 100n 1000n)

250N - REAALRACAALE S NLINCINCI AN St A A A 0 S0 d MR R et Ak At
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P Example A.1

‘ =

. 3

This is an example of a 4 bit full adder implemented using mnested 8

rdd=35 rss=35
rdd=35 rss=35
rdd=35 rss=35§
rdd=35 rss=35

rdd=35 rss=35§
rdd=35 rss=35

.model cmosp pmos vto=—1.1 n=5el6 kp=8u cox=.345f lambda=.025

.

be=.52 ms=,33 kpn=.0918f lgos=.4 lgod=.4 tld=1.,0

.model cmosn omos vto=1.1 p=1lel6 kp=22u cox=.345f lambda=.052
be=.52 ms=.33 kpn=,0918f 1gos=.4 lgod=.4 tld=1.0
.options

nolist noopts no mod nonode

BTt
" N s et
nt'xle e

Ry LN

L. L
St

’
e

| oy
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.tran 1n 80n
.print tran v(1) v(5) v(9) v(13) v(17) v(18) .
.end

- A
e
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